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Introduction
The motion of waves in water and other flu-

ids has given rise to many nonlinear, partial dif-
ferential equations. Perhaps most famous is the
Korteweg-de Vries equation

ut
�

ux � δuux � βuxxx � 0 (1)

which describes the propagation of waves in shal-
low water.

The effect of the dispersive term βuxxx is to
broaden the wave, while the nonlinear term αuux

causes the wave to steepen. Competition between
these two effects allows the KdV equation to sup-
port solitary wave solutions, or robust nonlinear
waves that can retain their form for long time
scales, despite interference.

The Benjamin Equation
My research at Los Alamos this summer fo-

cused on the dynamics of solutions to another
nonlinear, dispersive equation. The Benjamin
equation

ut
�

ux
� δuux � αLux � βuxxx � 0 (2)

(here L � H∂x, and H is the Hilbert transform) de-
scribes the vertical displacement of the interface
between a thin layer of fluid atop a much thicker
layer of higher density fluid, and bounded above
and below by rigid horizontal planes.

As with the KdV equation, the combination
of nonlinear and dispersive terms (in this case,
both the α and β terms are dispersive) admits
the possibility of solitary wave solutions. For
the Benjamin equation, such solutions require

the right balance between the competing disper-
sive terms. During the summer, I used a vari-
able order, variable time-step Adams-Bashforth-
Moulton method to integrate the equation in time.
I studied the behavior of perturbed steady state
solutions, as well as compact cos2 pulses when
evolved in time.

In general, it is not possible to write down an
analytic solution to the complete Benjamin Equa-
tion. However, for α � 0 the equation becomes
the KdV equation, while setting β � 0 gives us
the Benjamin-Ono equation. Both these equa-
tions have known analytic solutions, which we
used to validate our method and integrator.
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A steady state solution to the Benjamin equation
for δ � 2, α � 1 � 98 and β � 1 is evolved in time
using perturbed dispersion coefficient α � 1 � 96.
The solution sheds radiation and appears to re-
main stable.

0.1 Steady State Solutions

A numerical method for generating steady-state
solutions to the Benjamin equation is described
in [1] and yields solitary wave solutions with os-
cillatory tails. The solutions we used were gener-
ated for fixed δ � 2 and β � 1, while α varied
between 0 and 1.98. In general, the larger the
value of α, the more oscillatory the steady-state
solution, and the smaller the maximum peak am-
plitude. Before testing the stability of perturbed
solutions, we verified that the unperturbed steady
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state solutions in fact showed no change when we
used our program to evolve them in time.

To test the stability of these solutions, we per-
turbed the amplitude, width or α values of the
steady state solutions. The effect of perturbing
the value of α is to change the balance between
the two dispersive terms in the equation.

The perturbed solutions responded in one of
three ways when integrated in time. As predicted
in [1], we observed that the steady state solutions
remained stable for tiny perturbations (smaller
than 1%). For larger perturbations, the solutions
appeared to transition to another state, and then
stop changing. We are currently studying whether
these are new steady states. Finally, sufficiently
large perturbations caused the solutions to break
up entirely.

0.2 Multiplet Solutions

Under certain conditions, we observed that com-
pact cos2 pulses evolved into multi-humped soli-
tary waves with pulsating peaks. Such solutions
are called multiplets. At present, we have ob-
served these solutions only for values of δ, α and
β near 10, 1.3, and 0.5 respectively. This re-
flects a larger influence from the nonlinearity than
present for the steady state solutions, where δ � 2.

Multiplets have been observed as solutions of
other nonlinear, dispersive equations. The behav-
ior of multiplet solutions of two such equations is
described in [2], where it is observed that multi-
plets collide nearly elastically and are difficult to
fuse together. In future research we will check
whether such behavior occurs also for the Ben-
jamin equation.

Conclusions
Steady state solutions to the Benjamin equation

appear to remain stable to a small perturbation of
amplitude, width, or dispersive coefficients. I am
currently using numerical tools I created while at
Los Alamos to study the relative error of time in-
tegrated perturbed steady solutions as a function
of perturbation size. One of our goals is to charac-
terized this relationship and to approximate with
high accuracy the perturbation size for which the
solutions become unstable.
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The space-time evolution of a triplet solution
of the Benjamin equation for δ � 10, α � 1 � 39,
β � 0 � 49. The three peaks of this solitary wave
pulsate, yet remain bound to one another.

Multiplets are a little understood type of so-
lution to certain nonlinear, dispersive PDE’s, in-
cluding the Benjamin equation. Further research
will be to experiment with the conditions under
which such solutions arise, as well as the behav-
ior of interacting multiplets.
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